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Abstract

Background Radiological identification of temporal lobe epilepsy (TLE) is crucial for diag-

nosis and treatment planning. TLE neuroimaging abnormalities are pervasive at the group

level, but they can be subtle and difficult to identify by visual inspection of individual scans,

prompting applications of artificial intelligence (AI) assisted technologies.

Method We assessed the ability of a convolutional neural network (CNN) algorithm to

classify TLE vs. patients with AD vs. healthy controls using T1-weighted magnetic resonance

imaging (MRI) scans. We used feature visualization techniques to identify regions the CNN

employed to differentiate disease types.

Results We show the following classification results: healthy control accuracy = 81.54%

(SD= 1.77%), precision = 0.81 (SD= 0.02), recall = 0.85 (SD= 0.03), and F1-score = 0.83

(SD= 0.02); TLE accuracy = 90.45% (SD= 1.59%), precision = 0.86 (SD= 0.03), recall =
0.86 (SD= 0.04), and F1-score = 0.85 (SD= 0.04); and AD accuracy = 88.52%

(SD= 1.27%), precision = 0.64 (SD= 0.05), recall = 0.53 (SD= 0.07), and F1 score = 0.58

(0.05). The high accuracy in identification of TLE was remarkable, considering that only 47%

of the cohort had deemed to be lesional based on MRI alone. Model predictions were also

considerably better than random permutation classifications (p < 0.01) and were independent

of age effects.

Conclusions AI (CNN deep learning) can classify and distinguish TLE, underscoring its

potential utility for future computer-aided radiological assessments of epilepsy, especially for

patients who do not exhibit easily identifiable TLE associated MRI features (e.g., hippocampal

sclerosis).
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Plain language summary
In people with temporal lobe epi-

lepsy, seizures start in a particular

part of the brain positioned behind

the ears called the temporal lobe. It is

difficult for a doctor to detect that a

person has temporal lobe epilepsy

using brain scans. In this study, we

developed a computer model that

was able to identify people with

temporal lobe epilepsy from scans of

their brain. This computer model

could be used to help doctors identify

temporal lobe epilepsy from brain

scans in the future.
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Temporal lobe epilepsy (TLE) is defined by seizures origi-
nating in the temporal lobe1 and remains the most com-
mon form of medication-refractory epilepsy in adults2. The

mainstay of TLE diagnosis is the identification of ictal EEG onset
patterns localized to the temporal lobe during seizure-
monitoring3. Neuroradiological identification of a temporal lobe
lesion is not required for diagnosis per se but constitutes powerful
confirmatory evidence of TLE. The majority of TLE cases are
associated with medial temporal sclerosis (MTS), which is a
histological abnormality defined by cell loss and gliosis in the
hippocampus and surrounding medial temporal structures. Signs
associated with MTS can be detected during visual inspection of
pre-surgical MRI and often present as hippocampal atrophy on
T1-weighted images4, which is linearly associated with hippo-
campal cell loss5, and increased signal on T2-weighted images6–8,
reflecting underlying gliosis. However, in many cases, MTS is not
visually apparent on MRI and is only confirmed by histopatho-
logical analysis of surgical specimens9.

The identification of neuroimaging signs indicative of TLE is
crucial during diagnostic evaluation since the presence of MRI
abnormalities is commonly associated with a greater likelihood of
surgical success10–22. Therefore, strategies to improve neuroi-
maging diagnostic accuracy are of great importance and can have
a direct impact on the investigation and treatment of epilepsies.

An interesting aspect of brain atrophy in TLE is that it follows
a consistent pattern within specific areas of gray matter tissue but
can vary across individuals (Fig. 1). Conceptually, as far as
computer-vision is concerned, this is comparable to a hand-
written digit, which may vary depending on the writer, but also
follows a consistent pattern for each digit. As such, modern
techniques of computer vision, more specifically, convolutional
neural networks (CNN) used for image classification, could be
directly employed to address this problem.

In this study, we hypothesized that 2D CNN optimized for TLE
classification could leverage TLE whole brain atrophy patterns for
disease classification. Thus, we applied CNN to modern
approaches for T1-weighted voxel-based quantification of tissue
integrity and tested the classification accuracy of CNN to detect
and discriminate TLE from healthy controls. Importantly, other
neurological diseases, notably Alzheimer’s disease (AD), can also
be associated with gray matter atrophy involving the medial
temporal lobe and the limbic system23. It is therefore paramount
to test whether deep learning can not only detect the presence of
abnormalities, but discriminate TLE-specific patterns from other
forms of non-specific brain injury or atrophy in similar brain
regions.

Finally, we investigated the regional anatomical feature
importance in classification. We hypothesized that CNN would
classify TLE with accuracy higher than chance and that medial
temporal and limbic structures would be of high feature impor-
tance in classification. Our CNN models had a mean accuracy of
86.84% (SD= 1.33%), mean precision of 0.77 (SD= 0.03), a
mean recall of 0.74 (SD= 0.03), and an F1-score of 0.75
(SD= 0.025) for disease prediction. Feature analysis of these

models revealed temporal as well as extratemporal regions, such
as those found in the frontal (e.g., orbital, and olfactory) and
occipital cortices (e.g., precuneus), to be of high importance.

Methods
Data sources. Participants with TLE and their matched healthy
controls were derived from three different sites: The Medical
University of South Carolina (Charleston, SC, USA), Emory
University (Atlanta, GA, USA), and The University of Bonn
(Bonn, Germany). Patients were recruited sequentially between
March 2017 and December 2020 if they met the following
inclusion criteria: (1) a diagnosis of drug-resistant unilateral
temporal lobe epilepsy was achieved by the treating clinical team
based on a combination of clinical, neurophysiological, radio-
graphic, and neuropsychological findings in accordance with
criteria set for by the International League Against Epilepsy
(ILAE)1; (2) treatment with either resection or laser interstitial
thermoablation as decided by the patient and their clinical team;
(3) age > 18 years old. Patients were excluded if they had mass
occupying lesions (e.g., tumors, vascular malformations), as these
tend to distort the anatomy, if they did not undergo resective/
ablative surgery, or if they were found to have bilateral temporal
lobe epilepsy or an additional extratemporal focus. For patients
with radiographic findings of underlying hippocampal sclerosis
(47% of the sample), a diagnosis was further confirmed if seizure
semiology and scalp EEG patterns matched those expected on the
side of radiographic changes. Often, patients required invasive
EEG monitoring to confirm the unilateral medial temporal onset
of seizures, particularly if (a) they were deemed non-lesional on
MRI, (b) had poorly localized or lateralized seizures on scalp
EEG, and/or (c) had discordant findings. Frequently, additional
neuroimaging supplemented the evidence favoring medial tem-
poral ictal onset, particularly PET and SISCOM SPECT analysis.
The final diagnosis was achieved by consensus of surgical con-
ferences at each center. We did not include other causes of
lesional temporal epilepsy such as tumors (e.g., DNET) or vas-
cular malformations (e.g., cavernoma) to first, avoid anatomical
biases in the sample, and second, such lesions tend be to be
readily detected by human visual inspection. All relevant ethical
regulations were followed, and informed consent was obtained at
the respective facilities. IRB approval was obtained through the
Institutional Review Board where participants were enrolled,
these were the Medical University of South Carolina, Emory
University, and University of Bonn.

Additional data used in the preparation of this article were
obtained and approved from the Alzheimer’s Disease Neuroima-
ging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI
was launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease (AD).

Fig. 1 Conceptual representation of brain atrophy in two hypothetical patients with TLE. Patient A is an example of a lesional case and Patient B is an
example of a non-lesional case. Note that atrophy (red regions) may occur in different regions and with subtle differences in intensity, but the pattern of
atrophy follows a similar extra-hippocampal and limbic anatomical distribution.
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From this database, we collected T1-weighted images and
demographic information of participants with Alzheimer disease
(AD) as well as matched healthy controls. AD patients were
diagnosed based on ADNI inclusion criteria, which include a
probable AD diagnosis based on the National Institute on Aging-
Alzheimer’s Association guidelines for the neuropathological
assessment of AD. ADNI excludes any patients with AD that may
also have comorbid epilepsy, among other neurologic disorders.
Similarly, there were no cases in our sample of patients with a
diagnosis of TLE who also met criteria for AD or other
neurodegenerative disorders. ADNI participants gave informed
consent and IRB approval was obtained at each participating
location.

Participants. The study consisted of a total of 157 participants
diagnosed with medial TLE, 73 participants diagnosed with early
AD, and 251 healthy controls (150 derived from the epilepsy age-
matched controls and 101 derived from the ADNI database).
Ninety-two of participants had an ictal onset zone in the left
temporal lobe, 65 had an ictal onset zone in the right temporal
lobe, and 1 had bilateral onset. TLE participants were on average
38.68 years old (SD= 12.45) and 60% female (40% male). AD
participants were on average 75.71 years old (SD= 8.10) and
60.3% male (39.7% female). Healthy participants were on average
51.59 years old (SD= 20.97) and 51% male (49% female).
Demographic summary is displayed in Table 1. Epilepsy parti-
cipants had an average age of onset of 17.05 years (SD= 12.39)
and duration of 21.62 years (SD= 14.84).

MRI acquisition. The images for TLE patients were obtained
preoperatively on a 3T MRI scanner at each site. Scanner type and
acquisition parameters varied across institutions. MUSC: Siemens
Skyra 3T scanner, isotropic voxel size 1 mm, 12-channel head coil,
TR= 2050–2250ms, TE= 2.5–18ms, FOV= 256–320mm, flip
angle 10°. Emory: Siemens Prisma 3T scanner, isotropic voxel size
0.8 mm, 12-channel head coil, TR= 2300ms, TE= 2.75ms,
TI= 1100ms, flip angle 8. Bonn: Siemens Magnetom Trio 3T
scanner, 8-channel head coil, isotropic voxel size of 1 mm,
TR= 650ms, TE= 3.97ms, TI= 650ms, flip angle 10°.

All T1-weighted images from AD participants and their HC
were downloaded from the ADNI database. ADNI data were
acquired across a variety of scanners with protocols individua-
lized for each scanner. An example protocol for a MRI system
(Magnetom Sonata Syngo; Siemens Medical Solutions, Malvern,
PA), running version MR 2004A software, is the sagittal
inversion-prepared three-dimensional T1-weighted gradient-echo
sequence (magnetization-prepared rigid acquisition gradient echo
or equivalent), with the following parameters: repetition time
(TR) 2400ms; echo time (TE) 3.5 ms; inversion time (TI)
1000 ms; flip angle 8 degrees; bandwidth 180 Hz/pixel; field of
view (FOV) 240 mm; matrix 192 192; number of slices 60; slice
thickness 1.2 mm.

Preprocessing. Once T1-weighted images were collected and
allocated to either training, validation, or testing sets, we pre-
processed images for input into the CNN (see section on data
allocation below). This preprocessing pipeline included: normal-
ization, tissue segmentation, smoothing/thresholding, slice
extraction, and labeling. The process of normalization, tissue
segmentation, and smoothing/thresholding is displayed in Fig. 2.

MRI normalization. We normalized all T1-weighed images into
standard stereotaxic MNI152 space (113 × 137 × 113) using the
normalize function from the software package Statistical Para-
metric Mapping (SPM) with the following parameters: bias reg-
ularization = 0.0001, bias FWHM= 60, tissue probability map =
TPM.nii, voxel size = 1 × 1 × 1 mm3, and 4th degree b-spline
interpolation.

Tissue segmentation, smoothing, and thresholding. We used
SPM with the CAT12 extension toolbox to segment brain tissues
with the default parameters. Following tissue segmentation, we
smoothed gray and white segmented images using SPM’s smooth
function (a three-dimensional FWHM, 10 mm). The smoothing
was performed to minimize individual variability in sulci and gyri
positioning. Only voxels with more than 20% of probability of
being gray matter were included in the analyses.

Slice extraction and labeling. We extracted the 58 middle axial
slices (−29 to +28 mm) from each participant’s smoothed and
normalized gray matter images. We limited axial slice extraction
to those between −29 and +28 mm to avoid overfitting by
eliminating slices that would have low classification relevance in
the model, i.e., inputting axial slices at the superior or inferior
extremes that would contain fewer voxels with classification
weight. We then labeled each image according to the corre-
sponding diagnosis. Thus, we produced 58 labeled images per
participant.

Voxel-wise linear age regression. Since our dataset is not age
balanced, we removed potential age-related effects on gray matter
by performing a voxel-wise linear regression transformation. We
fitted a linear relationship between age and voxel intensity for
each voxel using data from all participants. We then replaced the
value in each voxel for each participant with the residual value
from the linear relationship between age and gray matter value.
An illustrative example of this transformation is shown in Fig. 3.

Training/validation/testing set allocation. We randomly divided
participants from each group (i.e., Alzheimer’s, TLE, and healthy
controls) into three cohorts: (1) Training, (2), Testing, and (3)
Validation sets. The training group comprised 60% of the parti-
cipants and was used to train the model. The testing set com-
prised 25% of the participants and was used to test the model.
The validation set was composed by the remaining 15% of the
participants and was used to optimize training of the model. For
example, the TLE dataset consists of 157 participants, who were
randomly assigned into three groups with 94 TLE participants
allocated to the training group (~60% of 157), 39 TLE partici-
pants assigned to the testing group (~25% of 157), and the
remaining 25 TLE participants allocated to the validation group
(~15% of 157).A Randomized group allocation was performed
before each model construction and evaluation using MATLAB’s
“dividerand” function (https://www.mathworks.com/help/
deeplearning/ref/dividerand.html).

Artificial neural network architecture. We used a two-
dimensional convolutional neural network (CNN) architecture

Table 1 Demographic summary.

Disease N sample Age (SDa) Sex (F/Mb)

Temporal lobe epilepsy 157 38.77 (12.44) 97/62
Alzheimer’s disease 73 75.71 (8.10) 29/44
Healthy

ADNI3 101 73.48 (6.55) 50/51
Epilepsy-age matched 150 36.75 (12.74) 73/75

Total 481 51.01 (20.74) 250/232

aStandard deviation.
bFemale/male.
cAlzheimers Disease Neuroimaging Initiative.
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for our artificial neural network design. Our CNN contained three
main layers: (1) an input layer, (2) hidden layer(s), and (3) an
output layer. Our input layer consisted of a 113 × 137 × 1 activa-
tions (i.e., the first two dimensions of an axial slice in the MNI
space plus the third dimension as the grayscale channel). Our
hidden layers contained three convolutional modules, each con-
sisting of four components: (a) a 3 × 3 convolutional component
with a [1 1] stride, (b) a batch normalization component, (c) a
ReLU component, and d) a max pooling component. These three
modules were followed by a classification layer (i.e., two fully
connected layers followed by a softmax). The output layer con-
tained the three disease classes (i.e., TLE, AD, and Healthy con-
trols). Figure 4 depicts the network’s architecture in more detail.

Model execution. To determine the stability of the algorithm, we
created one hundred models with different permutations of the

training, testing, and validation groups derived from the same
datasets at the same ratios to one another (i.e., 60% training, 15%
validation, and 25% testing). This produced a distribution of
algorithm performances, allowing us to examine the overall sta-
bility of the algorithm.

We used MATLAB’s Deep Learning Toolbox to construct and
execute the CNN. To optimize the objective function, we used a
stochastic gradient descent with momentum (SGDM) optimizer
with an initial learning rate of 0.01 (default value for SGDM in
MATLAB). Max number of epochs for training was set to thirty
with the training and validation set being shuffled before
each epoch. The remaining settings were set to default and
included the following: MiniBatchSize = 128, ValidationFre-
quency = 50, ValidationPatience = Inf, LearnRateSchedule=
‘none’, L2Regularization= 0.0001, GradientDecayFactor = 0.9,
SquaredDecayFactor = 0.9, Epsilon = 10−8, ResetInputNorma-
lization = true, BatchNormalizationStatistics= ‘population’.

Fig. 2 Image preprocessing pipeline. Image preprocessing pipeline was used to normalize the images to the MNI152 standard space, segment the brain
into probabilistic maps of gray matter, which were subsequently smoothed to reduce interindividual sulci and gyri positioning.

Fig. 3 An example of our voxel-wise age regression method. Red inset indicates the original voxel characteristics including intensity and location. Linear
regression lines represent the linear fit between age and voxel gray matter from participants. Orange insets indicate the regression residual, which is used
as the new transformed age regressed voxel intensity.
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Model evaluation. To evaluate the performance of the trained
models, we compared the trained model’s accuracy distribution to
that of a model trained on improperly labeled data (i.e., we
shuffled the labels for the training dataset while testing and
validation labels remained accurate). From our models trained on
the improperly labeled training dataset (hereby known as “shuf-
fled” models), we were able to evaluate our properly trained
model’s performance by obtaining a frequency distribution
comparison index (FDCI) value, calculated with the following
formula:

# of timesmodelA0s accuracy is higher thanmodelB0s accuracy
# of comparisons

:

ð1Þ
where model A was our properly trained model, and model B is
our improperly trained shuffled model. From this formula, we
obtained a number from 0 to 1 where 0 indicates that model A
never outperformed model B, and 1 indicates that model A
always outperformed model B. This technique has been applied
similarly to a recently published paper that used deep learning in
participants with epilepsy24. To evaluate the stability of the
algorithm, we created 200 models (100 for the properly trained,
100 for shuffled) to obtain a distribution of model performances.

The model was tasked to predict slice level disease diagnosis,
the following metrics were reported at the slice level:

Model accuracy was calculated using the following formula:

True Postiveþ TrueNegative
Total Comparisons

: ð2Þ

Model precision was calculated using the following formula:

True Positive
True Positiveþ False Positive

: ð3Þ

Model recall was calculated using the following formula:

True Positive
True Postiveþ False Negative

: ð4Þ

Model F1-score was calculated using the following formula:

2 ´
Precision ´Recall
Precisionþ Recall

: ð5Þ

Feature visualization. Feature visualization is a technique to gain
insight into the potential features that the CNN leverages to
predict classes. For feature visualization, we visualized the raw

activation of the ReLU layer of the third convolutional module
(i.e., ReLU 3) through a 3D reconstruction activation mapping
technique. In this case, we used a preprocessed participant datum
(i.e., segmented, smoothed, slice extracted, age-regressed image)
and calculated the sum activation (using MATLAB’s “activation”
function) of all the 32 convoluted images of ReLU 3 of one
trained network. We then min-max normalized the cumulative
activation to obtain a normalized cumulative activation matrix for
that datum. This was repeated for every preprocessed participant
datum, each time for one of the (one hundred) fully trained CNN
models. Depending on the initial brain slice (i.e., from −29 to
+28 mm) and the disease group (i.e., TLE, AD, or healthy), we
reconstructed an average 3-D topographic map (or disease acti-
vation brain) of the activations for each disease. To increase
interpretability of the results and further elucidate the mechanism
of our CNN, we again min-max renormalized each slice in our
disease activation brains and extracted voxels in our recon-
structed brain with values >0.75, setting the rest to 0. Finally, to
examine the anatomical location of our high activation voxels, we
used MRIcroGL to superimpose activation maps on the regions of
interest (ROIs) derived from the Automated Anatomical Labeling
(AAL) atlas. We chose the AAL atlas due to its vast presence in
epilepsy research25–28 and the ease of anatomical interpretability.
For participants with left-sided TLE, we mirrored the activation
maps along the sagittal axis and combined the maps with right-
sided TLE participants to allow ipsilateral versus contralateral
(relative to side of diagnosis) ROI analysis.

Voxel-based morphometry. To examine focal differences
between disease groups and to provide a comparison for visua-
lization among feature weight analyses and regions of group-wise
brain atrophy, we employed voxel-based morphometry (VBM).
We used independent samples t-test (two-tailed) comparisons
between each disease group for each voxel in our preprocessed
images, resulting in a total of three group comparisons (TLE vs.
AD, TLE vs. Healthy, AD vs. Healthy). After accounting for
multiple comparisons using Bonferroni corrected p-value
threshold, we set the t-value of any voxel that was not significant
to zero and min-max normalized the surviving values. Like our
feature visualization, we extracted voxels in the reconstructed
brain with values > 0.75, setting the rest to 0, and used MRIcroGL
to examine which ROIs had high t-value voxels. For participants
with left-sided TLE, we mirrored the t-value maps along the
sagittal axis and combined the maps with right-sided TLE

Fig. 4 Convolutional network architecture. Layers are linked in-series with the input layer connected to the hidden layers which is connected to the output
layer. Hidden layers are comprised of three convolutional units (convolution, batch norm, ReLu, and max pool) and a classification layer (fully connected,
and soft max).
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participants to allow ipsilateral versus contralateral (relative to
side of diagnosis) ROI analysis.

Statistics and reproducibility. All statistical calculations were
calculated within MATLAB. VBM used two-tailed t-test with a
Bonferroni corrected p-value threshold to identify statistically
significant voxel intensities. Our sample size consisted of a total of
157 participants diagnosed with medial TLE, 73 participants
diagnosed with early AD, and 251 healthy controls (150 derived
from the epilepsy age-matched controls and 101 derived from the
ADNI database). One hundred models were produced for the
shuffled model, and one hundred models were produced for the
properly trained model.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Disease prediction. We trained 200 models (100 for the properly
trained, 100 for shuffled) to predict disease using our pre-
processed T1 image slices. Compared to the shuffled model, the
trained model had a FDCI of 1 for age prediction (Fig. 5), i.e., it
significantly outperformed the shuffled model 100% of runs,
which is equivalent to observing these results by chance less than
1% of the time (i.e., p < 0.01). Trained models had a mean
accuracy of 86.84% (SD= 1.33%), mean precision of 0.77

(SD= 0.03), a mean recall of 0.74 (SD= 0.03), and an F1-score of
0.75 (SD= 0.025) for group prediction. Our shuffled model had a
mean accuracy of 67.16% (SD= 1.04%), mean precision of 0.41
(SD= 0.10), a mean recall of 0.33 (SD= 0.01), and an F1-score of
0.37 (SD= 0.1584) for group prediction. Disease dependent
metrics for the trained models are displayed in Table 2.

Feature visualization. In our activation mapping, we examined
the top average activations of the ReLU 3, the final layer before
the classification layers, for all 100 of our trained models. The
mean normalized activation for all AAL atlas regions in the
reconstructed feature weight brain was 0.079 (SD= 0.09) for TLE,
0.083 (SD= 0.10) for AD, and 0.078 (SD= 0.08) for healthy
controls. Reconstructed brain activation map and ROI activation
matrices are displayed in Fig. 6.

Voxel-based morphometry. We used VBM techniques to
examine focal differences in our preprocessed T1 images between
disease types. The mean normalized t-value for all AAL atlas
regions in the reconstructed VBM brain was 0.030 (SD= 0.06)
for TLE versus healthy, and the results are displayed in Fig. 7.

Discussion
In the current study, we investigated the use of CNN for TLE
disease classification, with a special emphasis on discriminating
TLE from another neurological disease with limbic atrophy (i.e.,
AD). We observed that a CNN model identified TLE vs. controls

Fig. 5 Model performance for disease prediction. Model performance for disease prediction using our preprocessed brain slices. Column a: Gray bar
graphs indicate correct label model performance (darker) and the shuffled models (lighter). Column b: Colored bars indicate disease specific performances.
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and TLE vs. AD at a statistically significant level independent of
age. Importantly, the machine learning approach achieved high
classification accuracy for TLE cases beyond the lesional status
identified by human experts. Furthermore, our feature visualiza-
tion analysis revealed that feature patterns were unique to each
disease, highlighting temporal and extratemporal regions for TLE,
leveraging traditional findings from VBM. Taken together, we
demonstrated that CNN can accurately identify participants with
TLE from AD and healthy controls while simultaneously
revealing neural structures critical to the classification of each
group. We discuss these findings in detail below.

The overarching aim of the current study was to test whether
CNN could distinguish between epilepsy, AD, and healthy con-
trols. As noted by our recent study that used machine learning for
epilepsy classification24, including another neurological disorder
in addition to epilepsy (AD in the current study) was paramount,
since it is possible that the CNN could be predicting non-specific
anatomical changes related to the presence of a neurological
disease involving limbic regions rather than the presence of TLE
in particular. We chose AD because of the shared characteristics
regarding temporal and limbic atrophy as well as global brain
changes29. In other words, if we were to train a model to classify
TLE, we would want to ensure that this model was not simply
detecting temporal-limbic atrophy but, rather, TLE-specific
changes. Indeed, we observed that the CNN was able to not
only identify the presence of pathology but also accurately dis-
tinguish between the two diseases. These results mirror findings
reported by other groups30,31 and support the growing potential
for clinical use of deep learning in diagnosis32. Since many deep
learning models (including ours) leverage data that typically are a
standard part of care for these diseases (e.g., MRI)33, deep
learning models potentially provide an inexpensive and effective
method to aid clinicians in diagnosis by complementing human
visual examination with other linear quantitative approaches.
Furthermore, this would be especially beneficial to non-lesional
cases underscored by the observation that our model was able to
accurately predict TLE diagnosis (~90%) compared to only 47%
by clinicians on MRI alone.

The performance of our CNN model and the results from the
subsequent feature visualization analysis indicate that CNN
leveraged whole brain TLE associated changes.

Global patterns of gray matter atrophy in TLE are supported by
our CNN model, which used each individual’s 58 axial slices (−29
to +28 mm) for training and testing. In other words, our CNN
can accurately distinguish an axial slice taken from a TLE brain
versus an axial slice taken from an AD brain. Since each of the 58
axial slices were tested independently to predict disease, specific
patterns of gray matter unique to each disease (i.e., pathology)
must have been present on most axial slices tested. This feature of
our design is important because it ensures that disease classifi-
cation is not reliant on a spurious finding of a single slice chosen
arbitrarily for model training or on anatomical changes that are
too local and could be missed by other unseen slices. Further-
more, our feature visualization analyses revealed broad disease-
dependent global patterns highlighting areas that the CNN used
for disease prediction. We interpret these areas as likely patterns

of pathology. Indeed, temporal-limbic areas that are well-
documented as associated with TLE pathology (e.g., hippo-
campus, amygdala, parahippocampal, caudate, putamen, cingu-
lum, and thalamus) were also highlighted by our feature
visualization technique. However, extratemporal areas including
those found in the frontal (e.g., orbital, and olfactory) and occi-
pital cortices (e.g., precuneus), were also identified by our feature
analysis, supporting quickly growing evidence that broad features
of epilepsy are present beyond the temporal-limbic areas24,34–36.
Lastly, ROIs such as the thalamus were highlighted by our feature
analysis but not our VBM analysis, potentially introducing new
insights and techniques to probing regions affected by TLE.

There are several clinical as well as research implications of the
current study. From a clinical standpoint, CNN continues to
demonstrate its role as a useful tool for aiding clinicians in the
diagnosis of epilepsy37. As discussed above, the visual confirma-
tion of a lesion on preoperative MRI has been consistently
deemed a reliable marker of higher chances for post-surgical
seizure freedom11. An important finding of the current approach
is the superior detection of TLE itself even among cases that were
deemed to be non-lesional in nature by human experts. In this
study, we included medial temporal lobe cases whose structural
MRI studies had been classified as either unremarkable (i.e., non-
lesional) or as having obvious radiographic features of underlying
hippocampal sclerosis pathology (i.e., lesional). 47% of patients
fell into the latter group. Partly, this is due to the fact that TLE
diagnosis by clinicians relies heavily on abnormalities in the
hippocampus despite the known prominence of aberrant patterns
in extra hippocampal regions both ipsi- and contralaterally in the
brains of patients with uniltateral focal epilepsy24. CNN over-
comes this overreliance on hippocampal imaging findings
through examination of subtle, diffuse disease-related pathology
that may otherwise go undetected by human visual examination38

(i.e., what is currently considered “non-lesional” epilepsy).
Indeed, the CNN model’s ~94% average accuracy in detecting
TLE suggests that the machine learning approach can identify
lesional patterns that are invisible to the human eye in a far larger
number of cases. This is critical to the future implementation of
AI-based tools in clinical settings because it suggests that the
definition of lesional epilepsy may benefit from a human-machine
synergistic interpretation and could change practice in many
cases. For example, in many cases, if a patient were classified by
the human experts as having “non-lesional” MRI imaging with
unremarkable or equivocal PET but semiological and neurophy-
siological evidence suggestive of medial temporal onset, invasive
EEG monitoring may be required before offering epilepsy surgery
to confirm the area of seizure onset. However, if AI could reliably
identify the presence of TLE pathology, lateralize it, and localize
it, this could prompt the redefinition of “lesional status” and aid
in the decision making of clinicians by integrating additional
information to clinical, radiographic, and neurophysiological
data. This could hence be cost-effective but also, more impor-
tantly, less invasive on patients desperately needing surgical
intervention to achieve control of their seizures. Naturally, we do
not propose that this single study should make such paradigmatic
change; rather, we believe that the findings of this study provide

Table 2 Disease-dependent model evaluation metrics.

Accuracy (SDa) Recall (SD) Precision (SD) F1-Score (SD)

Temporal lobe epilepsy 90.45% (1.59%) 0.86 (0.04) 0.86 (0.03) 0.85 (0.04)
Alzheimer’s disease 88.52% (1.27%) 0.53 (0.07) 0.64 (0.05) 0.58 (0.05)
Healthy 81.54% (1.77%) 0.85 (0.03) 0.81 (0.02) 0.83 (0.02)

aStandard deviation.
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an encouraging step towards the development of a machine
learning pipeline that can yield the outputs necessary for trans-
lation into clinical settings. Timely, reliable, and accurate diag-
nosis is key in the treatment planning of epilepsy, including
likelihood of surgical success. Hence, the development and fur-
ther refinement of machine learning models for these purposes
has potential major implications for the care of patients with

epilepsy. Taken together, we propose that our results could have a
direct impact on clinical treatment and further our understanding
of neuropathological changes in epilepsy. Our findings corrobo-
rate previous work on machine learning for the detection of both
pediatric39 and adult epilepsy24, particularly TLE37. Overall, we
build upon this work through showing that CNN can be disease-
specific without the confounding effect of age.

Fig. 6 Feature visualization analysis of convolutional neural networks for disease prediction. Analysis for each disease prediction is display in rows
(a: TLE, b: Healthy, c: AD). Each row has a 3D/mosaic view of our activation mapping reconstruction with a horizontal color bar indicating normalized
activation values for each slice and direction arrows either indicating left and right or for TLE, the diagnosis laterality, as well as a region of analysis (ROI)
activation matrix using the Automated Anatomical Labeling (AAL) atlas. The vertical color bar indicates mean activation values within each ROI. Cells
within the dotted lines indicate temporal ROIs. Ip Ipsilateral (relative to side of diagnosis), Con Contralateral.
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The findings of the current study must be interpreted within
the context of certain limitations. First, our study is restricted to a
specific form of focal epilepsy and cannot be generalized to all
epilepsy syndromes. It will be crucial for future cohorts to include
not only extratemporal epilepsy but also probe whether the
classifier can distinguish TLE from generalized genetic epilepsy
(GGE) syndromes. This latter point is important, since GGE
typically is deemed to be associated with a normal MRI brain and
hence “non-lesional” in nature. Again, the possibility of a subtle
pattern not otherwise detectable by human visual examination
may redefine our understanding of lesions in epilepsy. In fact,
preliminary evidence suggests a pattern of aberrant structural
organization in GGE40. Second, while we identified and addressed
the role of age as a potential confounder given our disease groups,
it will be crucial for future studies to probe the role of other
important confounding factors such as exposure to specific
medications, years of education, etc. Finally, the approach pro-
posed in this study could be extended to other applications within
epilepsy as well as other disease models. For example, for chal-
lenging MRI-negative cases where the neurophysiological and
semiological data suggest either GGE or a focal epilepsy with
rapid bisynchrony, this approach may help distinguish the epi-
lepsy syndrome. Naturally, lateralization of seizure foci is an
important application of machine learning models and may help
improve access for surgical evaluation of patients whose initial
clinical and imaging data fail to provide a clearly lateralizing
syndrome. Future work could use similar CNN approaches for a
variety of outcomes is also of interest, ranging from response to
antiseizure medications, dietary treatments, neuromodulation,
and postoperative seizure outcome, although this study does not
propose its efficacy at predicting these phenotypes. Extending this
approach to other diagnostic challenges is also promising,
including distinguishing Parkinsonian syndromes or different
subtypes of vascular dementia as well as gauging the neuroana-
tomical signatures of conditions such as traumatic brain injury,
among others. Additionally, future work could employ additional
neuropsychological tests to examine MCI, dementia, and early,
mid, and late-stage Alzheimer’s disease. Thirdly, since we did not
employ any exhaustive hyperparameter search, our model is not
fully optimized. Although this is beyond the scope of this study,
this is a limitation. Future studies can aim to optimize model
through a hyperparameter search via techniques such as grid

search, Bayesian, etc. to investigate the ideal hyperparameters
such as learning rate, batch size, epoch length, etc. for this applied
model as well as for the field of deep learning in medical imaging.

Data availability
The complete datasets analyzed in the current study are not publicly available due to
patient confidentiality restrictions set forth by the IRB. The datasets are available from
the corresponding author upon reasonable request which may require a Data Use
Agreement. The numerical data underlying the Figures can be found in Supplementary
Data 1.

Code availability
Custom code can be found on the following link: https://doi.org/10.5281/zenodo.
762123541.
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